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SUMMARY

The mechanism by which pharmacologic adminis-
tration of the hormone FGF21 increases energy
expenditure to cause weight loss in obese animals
is unknown. Here we report that FGF21 acts centrally
to exert its effects on energy expenditure and body
weight in obesemice. Using tissue-specific knockout
mice, we show that bKlotho, the obligate coreceptor
for FGF21, is required in the nervous system for these
effects. FGF21 stimulates sympathetic nerve activity
to brown adipose tissue through a mechanism that
dependson theneuropeptidecorticotropin-releasing
factor. Our findings provide an unexpected mecha-
nistic explanation for the strong pharmacologic ef-
fects of FGF21 on energy expenditure and weight
loss in obese animals.

INTRODUCTION

FGF21 is a hormone expressed in liver, where it is induced

by states of nutrient stress, including starvation and ketogenic

or high-carbohydrate diets, and the fibrate drugs. FGF21 is

also expressed in white adipose tissue (WAT), where it is induced

by fasting/refeeding regimens and the thiazolidinedione drugs,

and in brown adipose tissue (BAT), where it is induced by cold

(reviewed in Potthoff et al., 2012). In rodent models of obesity,

FGF21 administration caused weight loss by increasing energy

expenditure and improved insulin sensitivity and lipid parame-

ters (Coskun et al., 2008; Kharitonenkov et al., 2005; Xu et al.,

2009a, 2009b). Similar metabolic effects were seen in diabetic

rhesus monkeys and patients with type 2 diabetes (Gaich

et al., 2013; Kharitonenkov et al., 2007; Véniant et al., 2012b).

FGF21 acts through a cell surface receptor comprised of an

FGF receptor (FGFR), with FGFR1c the preferred isoform, in

complex with bKlotho (reviewed in Potthoff et al., 2012). While

the FGFRs are broadly expressed, bKlotho is expressed in a

more limited set of tissues, including WAT, BAT, and liver (Fon

Tacer et al., 2010). FGF21 mediates its pharmacologic effects
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on body weight and insulin sensitivity in part through WAT and

BAT (Adams et al., 2012; Ding et al., 2012; Véniant et al.,

2012a; Wu et al., 2011), where it induces uncoupling protein-1

(Ucp1) and uncoupled respiration (Fisher et al., 2012; Hondares

et al., 2010) and the hormone adiponectin (Holland et al., 2013;

Lin et al., 2013). FGF21 also acts on the nervous system.

FGF21 is not expressed in the CNS (Fon Tacer et al., 2010) but

crosses the blood-brain barrier (Hsuchou et al., 2007) and is pre-

sent in human cerebrospinal fluid (Tan et al., 2011). Intracerebro-

ventricular (i.c.v.) injection of FGF21 increased metabolic rate

and insulin sensitivity in rats (Sarruf et al., 2010). Within the

nervous system, bKlotho is expressed in the suprachiasmatic

nucleus (SCN) in the hypothalamus. It is also expressed in the

area postrema, nucleus of the solitary tract, and nodose ganglia,

which are discrete anatomical nuclei that together comprise the

dorsal-vagal complex (DVC) (Bookout et al., 2013). Using lean

mice specifically lacking bKlotho in the hypothalamus and/or

the hindbrain, we showed that bKlotho in the hypothalamus

is required for FGF21 to increase circulating ketone body and

glucocorticoid concentrations, to suppress growth and female

reproduction, and to modulate circadian behavior (Bookout

et al., 2013; Owen et al., 2013). However, since these studies

were all done in lean mice, they did not address whether the

effects of FGF21 on energy expenditure require that it act on

the nervous system. In this paper, we examine the contribution

of the nervous system to the pharmacologic actions of FGF21

in the context of diet-induced obesity (DIO).

RESULTS AND DISCUSSION

FGF21 Acts Centrally to Induce Energy Expenditure
Fgf21-transgenic (Tg) mice are resistant to weight gain (Ding

et al., 2012; Kharitonenkov et al., 2005). To determine whether

this effect involves FGF21 acting in the brain, we crossed

KlbCamk2a mice, in which the bKlotho gene (Klb) is disrupted in

both the hypothalamus (including the SCN) and DVC, but not

in adipose tissue and liver (Bookout et al., 2013), with Fgf21-Tg

mice to generate four genotypes: Klbfl/fl, Klbfl/fl/Tg, KlbCamk2a,

and KlbCamk2a/Tg mice. As expected (Inagaki et al., 2008),

Klbfl/fl/Tg mice weighed less than Klbfl/fl mice on the standard

chow diet due to their smaller body size, and this effect was
c.
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Figure 1. Klb Expression in the Nervous System Is Required for the Effects of FGF21 on Whole-Body Energy Expenditure

(A) Body weight in chow-fed groups of Klbfl/fl, Klbfl/fl/Tg, KlbCamk2a, and KlbCamk2a/Tg mice.

(B) Percent change in bodyweight in groups of mice fed a high-fat diet (HFD). Bodyweights for the groups at the end of the studywere as follows (in grams):Klbfl/fl,

44 ± 2.5; Klbfl/fl/Tg, 33 ± 1.7; KlbCamk2a, 40 ± 1.3; KlbCamk2a/Tg, 47 ± 2.6.

(C) Body composition after 8 weeks on HFD.

(D) Food consumption (normalized to body weight) and physical activity during a 24 hr period while on a HFD.

(E) Left: energy expenditure starting 24 hr after switching mice to the HFD. Right: quantification of 24 hr energy expenditure data for the same mice on either

regular chow or HFD.

(A)–(C) were performed with mice housed at 22�–23�. (D) and (E) were performed using metabolic cages maintained at 21�–22�.
Data are shown as the mean ± SEM. n = 8–13/group (A–C); n = 6/group (D and E). *p < 0.05 compared to control.
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absent in KlbCamk2a/Tg mice (Figure 1A). When fed a high-fat

diet (HFD), Klbfl/fl/Tg mice gained less weight than Klbfl/fl and

KlbCamk2a mice (Figure 1B). These effects of FGF21 overexpres-

sion were lost in the KlbCamk2a/Tg mice (Figure 1B). HFD-fed

Klbfl/fl/Tg mice had a reduced percentage of fat mass and

plasma leptin concentrations and increased percentage of lean

mass compared to the other three genotypes (Figure 1C; Table

S1, available online). In metabolic cage studies, the Klbfl/fl/Tg

mice had significantly increased food consumption and energy

expenditure with no change in physical activity (Figures 1D

and 1E). This significant effect of FGF21 on energy expenditure

was not observed in the same mice fed a regular chow diet
Cell
(Figure 1E), suggesting that oxidative substrate was limiting.

Together, these data demonstrate that in the context of nutri-

tional surfeit, FGF21 acts on the nervous system to stimulate

energy expenditure.

We further evaluated carbohydrate and lipid parameters in the

HFD-fed Klbfl/fl, Klbfl/fl/Tg, KlbCamk2a, and KlbCamk2a/Tg mice.

Plasma glucose, insulin, and cholesterol were all significantly

lower in Klbfl/fl/Tg mice than in the other three genotypes, and

plasma triglycerides showed a similar trend (Table S1). Likewise,

hepatic cholesterol and triglyceride concentrations were sig-

nificantly lower in Klbfl/fl/Tg mice than in the other genotypes

(Table S1).
Metabolism 20, 670–677, October 7, 2014 ª2014 Elsevier Inc. 671
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FGF21 Acts Centrally to Induce Thermogenic Genes
We next compared gene expression in BAT, subcutaneous (sc)

and epididymal (e) WAT and liver of Klbfl/fl, Klbfl/fl/Tg, KlbCamk2a,

and KlbCamk2a/Tg mice. As expected, Klb was unchanged in

BAT, scWAT, eWAT, and liver of KlbCamk2a compared to Klbfl/fl

mice, although FGF21 overexpression increased Klb mRNA in

eWAT in Klbfl/fl, but not KlbCamk2a, mice (Figures 2A–2D). There

were no differences among genotypes in Fgfr1c expression.

In BAT, Ucp1, deiodinase 2 (Dio2), and elongation of very long

chain fatty acids like 3 (Elovl3) were elevated in Klbfl/fl/Tg

compared to Klbfl/fl mice, consistent with increased thermogen-

esis (Figure 2A). Interestingly, bone morphogenic protein 8b

(Bmp8b), which is induced in BAT in response to cold or HFD

feeding and sensitizes BAT to the thermogenic actions of norepi-

nephrine (Whittle et al., 2012), was increased markedly in Klbfl/fl/

Tg mice compared to Klbfl/fl controls (Figure 2A). In scWAT,

Ucp1, peroxisome proliferator-activated receptor g (Pparg),

phosphoenolpyruvate carboxykinase (Pck1), adipocyte triacyl-

glycerol lipase (Atgl), hormone-sensitive lipase (Hsl), acetyl-

CoA carboxylase a (Acaca), stearoyl-coenzyme A desaturase 1

(Scd1), and adiponectin (Adipoq) were increased in Klbfl/fl/Tg

compared to Klbfl/fl controls (Figure 2B). The induction of Ucp1

is consistent with a recent report showing that FGF21 causes

browning of WAT (Fisher et al., 2012). In eWAT, Pparg, PPARg

coactivator-1a (Pgc1a), Pck1, Atgl, Hsl, Acaca, Scd1, and

Adipoq were increased in Klbfl/fl/Tg compared to Klbfl/fl mice

(Figure 2C). All of these FGF21-dependent changes in gene

expression were lost in KlbCamk2a/Tg mice (Figures 2A–2C),

demonstrating that bKlotho in the nervous system is important

for FGF21 to exert many of its pharmacologic effects on gene

expression in adipose tissue. Since FGF21 also acts directly

on adipocytes to induce Ucp1 and other genes (Fisher et al.,

2012; Hondares et al., 2010), their maximal induction likely

involves cooperative effects of FGF21 on both adipose tissue

and the nervous system. In liver, fatty acid synthase (Fasn),

Scd1, Acaca, Cd36, and Elovl6 were decreased in Klbfl/fl/Tg

compared to Klbfl/fl mice (Figure 2D). These inhibitory effects

of FGF21 were also absent in KlbCamk2a/Tg mice (Figure 2D).

A recent study showed that the effects of FGF21 on reducing

triglyceride and cholesterol concentrations were lost in liver-spe-

cific insulin receptor knockout mice (Emanuelli et al., 2014). Simi-

larly, the loss of FGF21 action in liver of KlbCamk2a/Tg mice may

be secondary to the loss of its insulin-lowering action (Table

S1). Expression of dual specificity phosphatase 4 (Dusp4), which

inhibits ERK1/2, was increased in Klbfl/fl/Tg mice compared

to Klbfl/fl mice in all three adipose tissue depots, but not liver

(Figures 2A–2D). Dusp4 was still increased in KlbCamk2a/Tg

compared to KlbCamk2a mice in BAT and eWAT (Figures 2A and

2C), reinforcing the notion that FGF21 can also act directly on

adipose tissue.

FGF21 Acts on the Hypothalamus
To assess the relative contribution of bKlotho in the DVC

versus the hypothalamus to the metabolic actions of FGF21,
Figure 2. Klb Expression in the Nervous System Is Required for the Ef

(A–D) Gene expression was analyzed by qPCR in (A) brown adipose tissue (BAT),

(D) liver of Klbfl/fl, Klbfl/fl/Tg, KlbCamk2a, and KlbCamk2a/Tg mice after 3 months on t

expression for each gene. Data are shown as the mean ± SEM. n = 8–13/group.

Cell
we crossed Fgf21-Tg mice with KlbPhox2b mice, in which Klb

is disrupted in the DVC but not the hypothalamus (Bookout

et al., 2013). Metabolic parameters were evaluated in HFD-

fed Klbfl/fl, Klbfl/fl/Tg, KlbPhox2b, and KlbPhox2b/Tg mice. In

contrast to KlbCamk2a/Tg mice, KlbPhox2b/Tg mice were similar

to Klbfl/fl/Tg mice with respect to weight gain, energy expendi-

ture, and plasma insulin and glucose concentrations, although

the significance of the decrease in glucose was lost in the

KlbPhox2b/Tg mice (Figure S1A). Likewise, KlbPhox2b/Tg and

Klbfl/fl/Tg mice had comparable changes in the expression

of Ucp1 in BAT (Figure S1B). However, the significance of

Ucp1 induction in scWAT was lost in the KlbPhox2b/Tg mice

(Figure S1B). Overall, these data support the importance of

bKlotho in the hypothalamus and not the DVC for the central

actions of FGF21.

Since Fgf21-Tg mice are chronically exposed to high levels

of FGF21, we examined whether the metabolic effects of

shorter-term exposure to recombinant FGF21 in DIO mice

also require bKlotho in the nervous system. DIO Klbfl/fl and

KlbCamk2a mice were administered FGF21 or vehicle for 2 weeks

by osmotic minipump. Plasma FGF21 concentrations were 29 ±

11 ng/ml and 36 ± 13 ng/ml in the Klbfl/fl and KlbCamk2a mice,

respectively. As expected, FGF21 decreased body weight,

percent body fat, and plasma insulin, glucose, cholesterol,

and leptin concentrations in DIO Klbfl/fl mice (Figure 3A). All of

these effects of FGF21 were absent in the KlbCamk2a mice (Fig-

ure 3A). FGF21 administration also increased Ucp1 expression

in BAT and scWAT in Klbfl/fl, but not KlbCamk2a, mice (Figure 3B).

Overall, the pattern of gene expression in BAT, scWAT, eWAT,

and liver of Klbfl/fl and KlbCamk2a mice in response to recombi-

nant FGF21 was similar to that seen with the FGF21 transgene,

with nearly all of the effects of FGF21 lost in the KlbCamk2a

background (Figure S2). Thus, bKlotho in the nervous system

is required for the pharmacologic actions of FGF21 in DIO

mice.

FGF21 Induces Sympathetic Nerve Activity
Since BAT-mediated energy expenditure is regulated by the

sympathetic nervous system, we used multifiber sympathetic

nerve recording to directly measure the effect of FGF21 on

sympathetic nerve activity (SNA) subserving BAT in mice.

Injection of FGF21 i.c.v. increased BAT SNA in a time- and

dose-dependent manner (Figures 4A and 4B). SNA was

induced approximately 30 min after FGF21 administration and

continued to increase over the 4 hr experiment. This effect

was blocked by i.c.v. pretreatment with PD173074 (Figure

4B), which inhibits the tyrosine kinase activities of FGFR1,

FGFR2, and FGFR3 (Kunii et al., 2008; Mohammadi et al.,

1998). Intravenous (i.v.) injection of FGF21 also increased

BAT SNA, which was inhibited by i.c.v. pretreatment with

PD173074 (Figure 4C). The onset of SNA induction was

slower after i.v. injection compared to i.c.v. injection, as ex-

pected, since FGF21 must cross the blood-brain barrier. The

effect of FGF21 on SNA when administered peripherally was
fects of FGF21 on Gene Expression in HFD-Fed Mice

(B) subcutaneous (sc) white adipose tissue (WAT), (C) epididymal (e) WAT, and

he high-fat diet. qPCR cycle time values are shown for the group with highest

*p < 0.05 compared to control.
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Figure 3. Klb Expression in the Nervous System Is Required for

Metabolic Actions of Recombinant FGF21 Delivered by Minipump

(A andB)Groupsof diet-inducedobesemicewere administeredFGF21 (0.8mg/

kg/day) or vehicle by osmotic minipump for 2 weeks and evaluated for (A)

percent change in body weight (day 1 versus day 14), body composition, and

plasma insulin, glucose, cholesterol, and leptin concentrations (day 14) or (B)

uncoupling protein-1 (Ucp1) gene expression in brown adipose tissue (BAT) and

subcutaneous white adipose tissue (scWAT). For (A), body weights for the

groupsat theendof the studywere as follows (in grams):Klbfl/fl/vehicle, 34± 1.3;

Klbfl/fl/FGF21, 30 ± 1.0; KlbCamk2a/vehicle, 36 ± 1.6; KlbCamk2a/FGF21, 36 ± 1.3.

Data are shown as the mean ± SEM. n = 5–6/group. *p < 0.05 compared to

vehicle.
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markedly attenuated in KlbCamk2a mice (Figure 4D). The residual

effect of FGF21 on BAT SNA in the KlbCamk2a mice could be

due to either incomplete knockout of bKlotho in the nervous

system or FGF21 acting via other, unknown mechanisms.

Regardless, the data in Figure 1E show that bKlotho in the ner-

vous system is crucial for the effect of FGF21 on energy

expenditure.
674 Cell Metabolism 20, 670–677, October 7, 2014 ª2014 Elsevier In
FGF21 Actions Require Corticotropin-Releasing Factor
We previously showed that corticotropin-releasing factor

(Crf) mRNA in hypothalamus and circulating corticosterone con-

centrations are increased in Fgf21-Tg mice (Bookout et al.,

2013). Likewise, hypothalamic CrfmRNA was elevated 3 hr after

intraperitoneal injection of FGF21, and there was a correspond-

ing increase in plasma adrenocorticotropic hormone (ACTH)

(Figure 4E). While ACTH concentrations were increased under

these acute FGF21 treatment conditions, they were reduced af-

ter administration of FGF21 for 2 weeks and in Fgf21-Tg mice

(Bookout et al., 2013), suggesting that chronic FGF21 exposure

sensitizes the adrenal to ACTH. Indeed, there is evidence that

the autonomic nervous system can modulate the sensitivity of

the adrenal to ACTH (Kalsbeek et al., 2010). Since i.c.v. injection

of CRF stimulates sympathetic outflow to BAT and thermogene-

sis in rats (Arase et al., 1988; Cerri and Morrison, 2006; LeFeuvre

et al., 1987), we tested whether CRF contributes to the effects of

FGF21 on BAT. Notably, i.c.v. injection of the CRF receptor

antagonist, a-helical CRF(9-41) (Rivier et al., 1986), which inhibits

both the CRF1 and CRF2 receptor subtypes, completely

blocked the effect of FGF21 on SNA in BAT (Figure 4F). This

finding that FGF21 action involves downstream effects on CRF

likely explains the relatively slow onset of SNA in BAT in response

to FGF21. In the hypothalamus, bKlotho is most highly ex-

pressed in the SCN, whereas CRF is primarily localized in the

paraventricular nucleus (PVN). Since the SCN is known to act

on the PVN to regulate the circadian pattern of CRF and cortico-

sterone release (Kalsbeek et al., 2010), FGF21 may mediate its

effects on CRF indirectly via the SCN. However, the precise

neuroanatomical relationship between bKlotho andCRF remains

to be determined. Nevertheless, our findings suggest that FGF21

regulates both BAT SNA and corticosterone levels via its effects

on CRF.

In summary, wedemonstrate that FGF21 acts centrally to stim-

ulate sympathetic outflow, energyexpenditure, andweight loss in

DIOmice. We previously showed that the acute effects of FGF21

onwhole-body insulin sensitivity and glucose uptake in BATwere

lost in HFD-fedmice lacking bKlotho in adipose tissue (Ding et al.,

2012). How do we reconcile these findings? In vivo, the thermo-

genic effects of UCP1 require both norepinephrine and oxidative

substrate (Nedergaard et al., 2005). For example, while PPARg

agonists efficiently stimulateUcp1 expression and lipid accumu-

lation in both brown and white adipocytes, they do not increase

thermogenesis. However, they potentiate the thermogenic ac-

tions of b-adrenergic receptor agonists (Foellmi-Adams et al.,

1996; Sell et al., 2004; Thurlby et al., 1987). We suggest that

FGF21workssimilarly to this combinationofPPARgandb-adren-

ergic receptor agonists through a 2-fold mechanism (Figure 4G).

First, FGF21 acts on the nervous system to stimulate sympathetic

outflow to BAT, which induces Ucp1 and lipolysis (Cannon and

Nedergaard, 2004). FGF21alsopromotes thebrowningof scWAT

(Fisher et al., 2012), an effect that in vivo involves bKlotho in the

nervoussystem.Second, FGF21acts directly onBATand scWAT

to increase glucose uptake and substrate mobilization. Accord-

ingly, we find that energy expenditure is markedly upregulated

in lean Fgf21-Tg mice when they are switched to the HFD and

additional substrate is made available for oxidation (Figure 1E).

Thus, FGF21 regulates both the mobilization and uncoupled

oxidation of substrate in BAT and browned WAT.
c.
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Figure 4. FGF21 Acts Centrally to Stimulate

Brown Adipose Tissue Sympathetic Nerve

Activity

(A) Representative sympathetic nerve activity

(SNA) recordings at baseline and 4 hr after intra-

cerebroventricular (i.c.v.) administration of FGF21

(1 mg) or vehicle.

(B) Left: percent change in BAT SNA following

i.c.v. injection of FGF21 (1 mg) or vehicle. Right:

percent change in BAT SNA at 3–4 hr following

i.c.v. injection of FGF21 at the indicated doses.

Mice were pretreated for 10 min with either vehicle

or an FGF receptor inhibitor (PD173074, 25 mg)

delivered i.c.v. as indicated.

(C) Left: percent change in BAT SNA following

intravenous (i.v.) injection of vehicle or FGF21

(1 mg/kg). Right: percent change in BAT SNA at

3–4 hr following i.v. injection of FGF21. Mice were

pretreated for 10 min with either PD173074 or

vehicle delivered i.c.v. as indicated.

(D) Left: percent change in BAT SNA following

i.v. injection of FGF21 (1 mg/kg) into Klbfl/fl or

KlbCamk2a mice. Right: quantification of SNA data

at the 3–4 hr time points.

(E) Crf mRNA levels in whole hypothalamus and

plasma adrenocorticotropic hormone (ACTH)

concentrations 3 hr after i.p. injection with either

vehicle or FGF21 (1 mg/kg).

(F) Percent change in BAT SNA 3–4 hr after i.c.v.

injection of FGF21 (1 mg). Mice were pretreated for

10 min with either vehicle (saline, 2 ml) or a-helical

CRF(9-41) (ahCRF(9-41); 6 mg) delivered i.c.v. as

indicated.

Data are shown as the mean ± SEM. n = 5–7/

group. *p < 0.05 compared to either vehicle (B, C,

and E) or Klbfl/fl (D) as determined by t test. For (B)–

(D) (right panels) and (F), the percent change in

BAT SNA was calculated based on the average of

the final four time points relative to baseline.

(G) Model for the effects of FGF21 on energy

expenditure. FGF21 acts on the hypothalamus to

induce corticotropin-releasing factor (CRF) and to

stimulate sympathetic nerve activity (SNA), which

in turn induces uncoupling protein-1 (UCP1) and

lipolysis in brown adipose tissue (BAT). FGF21 also

acts directly on BAT to stimulate glucose uptake

and to mobilize oxidative substrate. These dual

effects induce efficient energy expenditure. The

model is basedon this study andprevious literature

(Cannon and Nedergaard, 2004; Ding et al., 2012).
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EXPERIMENTAL PROCEDURES

Mouse Studies

Mouse strains have been described and are on mixed C57BL6J;129/Sv back-

grounds (Bookout et al., 2013; Owen et al., 2013). Age-matched 3- to 7-month-

old male littermates were used for all experiments and were fed either a

standard chow (Harlan Teklad, TD.2916) or a high-fat diet containing 60%

fat (Research Diets, D12492i). For the minipump experiments, mice were

maintained on the high-fat diet for 12 weeks prior to initiating the experiment.

Housing rooms were maintained between 22�C and 23�C. Metabolic cage

studies were performed at 21�C–22�C. Indirect calorimetry using LabMaster
Cell Metabolism 20, 670–677
metabolic cages (TSE Systems) was used to

determine energy expenditure per gram of lean

body mass. Energy expenditure was calculated
as a function of O2 consumption and CO2 production according the following

formula: energy expenditure (kcal/hr) = ((3.941 3 vO2 (ml/hr)) + (1.1063 vCO2

(ml/hr)))/1,000. Body composition was measured using an EchoMRI-100 Body

Composition Analyzer. All experiments were approved by the Institutional

Animal Care and Research Advisory Committee of the University of Texas

Southwestern Medical Center or the University of Iowa.

Materials

Recombinant human FGF21 was from Novo Nordisk. Subcutaneous osmotic

pumpswere fromALZET. PD173074was fromSigma. a-helical CRF(9-41) was

from Phoenix Pharmaceuticals. The following kits were used to measure
, October 7, 2014 ª2014 Elsevier Inc. 675
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metabolic parameters: glucose (Wako Chemicals), triglycerides (Wako Chem-

icals), cholesterol (Fisher Scientific), insulin (Crystal Chem), leptin (Linco), and

adrenocorticotropic hormone. Liver triglyceride and cholesterol levels were

measured as described (Zhang et al., 2012).

Real-Time Quantitative PCR Analyses

Total RNA was extracted from liver using Stat 60 reagent (IsoTex Diagnostics).

For adipose tissue, RNeasy lipid tissue mini kits (QIAGEN) were used. RNA

(1–2 mg) from each sample was then used to generate cDNA (Invitrogen).

qPCR was performed using SYBR green as described (Bookout et al., 2006).

Sympathetic Nerve Activity Measurements

Measurement of sympathetic nerve activity to BAT was performed as

described (Harlan et al., 2011; Lockie et al., 2012; Morgan and Rahmouni,

2010). Following the establishment of baseline values, mice were pretreated

for 10 min with either vehicle (10 mM Na2HPO4, 2% [w/v] glycerol [pH 7.6]),

PD173074, or a-helical CRF(9-41) administered i.c.v. followed by i.c.v. or i.v.

(jugular vein infusion) administration of vehicle (10 mM Na2HPO4, 2% [w/v]

glycerol [pH 7.6]) or recombinant FGF21. SNA was recorded for an additional

4 hr. All i.c.v. injection volumes were 2 ml. The dose of PD173074 used (25 mg),

which had no effect on SNA on its own (Figure 4B), was based on a previous

publication in which PD173074 inhibited FGF19 action (Morton et al., 2013).

The dose of a-helical CRF(9-41) (6 mg) was based on a previous publication

in which this CRF antagonist blocked SNA activity in rats (Correia et al., 2001).

Statistical Analyses

Statistical analyses were performed by two-way ANOVAwith post hoc correc-

tion (GraphPad Prism) unless indicated otherwise. Data are presented as the

mean ± SEM; p < 0.05 was considered significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes two figures and one table and can be found

with this article online at http://dx.doi.org/10.1016/j.cmet.2014.07.012.

AUTHOR CONTRIBUTIONS

B.M.O. designed, conducted, and analyzed experiments involving KlbPhox2b

mice, osmotic minipumps, and FGF21 injection. X.D. initiated the project

and designed, conducted, and analyzed experiments involving KlbCamk2a

and KlbPhox2b mice. D.A.M. and K.R. designed, conducted, and analyzed the

sympathetic nerve activity experiments. K.C.C. contributed to gene expres-

sion analyses and project design, and A.L.B. contributed to project design.

S.A.K. and D.J.M. supervised the project and wrote the paper.

ACKNOWLEDGMENTS

We thank Yuan Zhang, Heather Lawrence, Kevin Vale, and Sofya Perelman for

technical assistance and Birgitte Andersen (Novo Nordisk) for providing hu-

man recombinant FGF21. This work was supported by National Institutes of

Health grants R01DK067158 (S.A.K. and D.J.M.), 1F32DK098908 (K.C.C),

GM007062 (A.L.B.), and HL084207 (K.R.); the Robert A. Welch Foundation

(grant I-1558 to S.A.K. and grant I-1275 to D.J.M.); the American Heart Asso-

ciation (14EIA18860041 to K.R.); and the Howard Hughes Medical Institute (to

K.C.C. and D.J.M.). X.D. is an employee and stockholder of NGM Bio-

pharmaceuticals. The recombinant FGF21 was provided by Novo Nordisk.

Received: February 19, 2014

Revised: June 2, 2014

Accepted: July 15, 2014

Published: August 14, 2014

REFERENCES

Adams, A.C., Yang, C., Coskun, T., Cheng, C.C., Gimeno, R.E., Luo, Y., and

Kharitonenkov, A. (2012). The breadth of FGF21’s metabolic actions are gov-

erned by FGFR1 in adipose tissue. Mol Metab 2, 31–37.
676 Cell Metabolism 20, 670–677, October 7, 2014 ª2014 Elsevier In
Arase, K., York, D.A., Shimizu, H., Shargill, N., and Bray, G.A. (1988). Effects of

corticotropin-releasing factor on food intake and brown adipose tissue ther-

mogenesis in rats. Am. J. Physiol. 255, E255–E259.

Bookout, A.L., Cummins, C.L., Mangelsdorf, D.J., Pesola, J.M., and Kramer,

M.F. (2006). High-throughput real-time quantitative reverse transcription

PCR. Curr. Protoc. Mol. Biol. Chapter 15, 8.

Bookout, A.L., de Groot, M.H., Owen, B.M., Lee, S., Gautron, L., Lawrence,

H.L., Ding, X., Elmquist, J.K., Takahashi, J.S., Mangelsdorf, D.J., and

Kliewer, S.A. (2013). FGF21 regulates metabolism and circadian behavior by

acting on the nervous system. Nat. Med. 19, 1147–1152.

Cannon, B., and Nedergaard, J. (2004). Brown adipose tissue: function and

physiological significance. Physiol. Rev. 84, 277–359.

Cerri, M., and Morrison, S.F. (2006). Corticotropin releasing factor increases in

brown adipose tissue thermogenesis and heart rate through dorsomedial hy-

pothalamus and medullary raphe pallidus. Neuroscience 140, 711–721.

Correia, M.L., Morgan, D.A., Mitchell, J.L., Sivitz, W.I., Mark, A.L., and Haynes,

W.G. (2001). Role of corticotrophin-releasing factor in effects of leptin on sym-

pathetic nerve activity and arterial pressure. Hypertension 38, 384–388.

Coskun, T., Bina, H.A., Schneider, M.A., Dunbar, J.D., Hu, C.C., Chen, Y.,

Moller, D.E., and Kharitonenkov, A. (2008). Fibroblast growth factor 21 cor-

rects obesity in mice. Endocrinology 149, 6018–6027.

Ding, X., Boney-Montoya, J., Owen, B.M., Bookout, A.L., Coate, K.C.,

Mangelsdorf, D.J., and Kliewer, S.A. (2012). bKlotho is required for fibroblast

growth factor 21 effects on growth and metabolism. Cell Metab. 16, 387–393.

Emanuelli, B., Vienberg, S.G., Smyth, G., Cheng, C., Stanford, K.I., Arumugam,

M., Michael, M.D., Adams, A.C., Kharitonenkov, A., and Kahn, C.R. (2014).

Interplay between FGF21 and insulin action in the liver regulates metabolism.

J. Clin. Invest. 124, 515–527.

Fisher, F.M., Kleiner, S., Douris, N., Fox, E.C., Mepani, R.J., Verdeguer, F., Wu,

J., Kharitonenkov, A., Flier, J.S., Maratos-Flier, E., and Spiegelman, B.M.

(2012). FGF21 regulates PGC-1a and browning of white adipose tissues in

adaptive thermogenesis. Genes Dev. 26, 271–281.

Foellmi-Adams, L.A., Wyse, B.M., Herron, D., Nedergaard, J., and Kletzien,

R.F. (1996). Induction of uncoupling protein in brown adipose tissue.

Synergy between norepinephrine and pioglitazone, an insulin-sensitizing

agent. Biochem. Pharmacol. 52, 693–701.

Fon Tacer, K., Bookout, A.L., Ding, X., Kurosu, H., John, G.B., Wang, L., Goetz,

R., Mohammadi, M., Kuro-o, M., Mangelsdorf, D.J., and Kliewer, S.A. (2010).

Research resource: Comprehensive expression atlas of the fibroblast growth

factor system in adult mouse. Mol. Endocrinol. 24, 2050–2064.

Gaich, G., Chien, J.Y., Fu, H., Glass, L.C., Deeg, M.A., Holland, W.L.,

Kharitonenkov, A., Bumol, T., Schilske, H.K., and Moller, D.E. (2013). The ef-

fects of LY2405319, an FGF21 analog, in obese human subjects with type 2

diabetes. Cell Metab. 18, 333–340.

Harlan, S.M., Morgan, D.A., Agassandian, K., Guo, D.F., Cassell, M.D.,

Sigmund, C.D., Mark, A.L., and Rahmouni, K. (2011). Ablation of the leptin re-

ceptor in the hypothalamic arcuate nucleus abrogates leptin-induced sympa-

thetic activation. Circ. Res. 108, 808–812.

Holland,W.L., Adams, A.C., Brozinick, J.T., Bui, H.H., Miyauchi, Y., Kusminski,

C.M., Bauer, S.M.,Wade,M., Singhal, E., Cheng, C.C., et al. (2013). An FGF21-

adiponectin-ceramide axis controls energy expenditure and insulin action in

mice. Cell Metab. 17, 790–797.

Hondares, E., Rosell, M., Gonzalez, F.J., Giralt, M., Iglesias, R., and Villarroya,

F. (2010). Hepatic FGF21 expression is induced at birth via PPARalpha in

response to milk intake and contributes to thermogenic activation of neonatal

brown fat. Cell Metab. 11, 206–212.

Hsuchou, H., Pan, W., and Kastin, A.J. (2007). The fasting polypeptide FGF21

can enter brain from blood. Peptides 28, 2382–2386.

Inagaki, T., Lin, V.Y., Goetz, R., Mohammadi, M., Mangelsdorf, D.J., and

Kliewer, S.A. (2008). Inhibition of growth hormone signaling by the fasting-

induced hormone FGF21. Cell Metab. 8, 77–83.

Kalsbeek, A., Fliers, E., Hofman, M.A., Swaab, D.F., and Buijs, R.M. (2010).

Vasopressin and the output of the hypothalamic biological clock.

J. Neuroendocrinol. 22, 362–372.
c.

http://dx.doi.org/10.1016/j.cmet.2014.07.012


Cell Metabolism

FGF21 Activates the Sympathetic Nervous System
Kharitonenkov, A., Shiyanova, T.L., Koester, A., Ford, A.M., Micanovic, R.,

Galbreath, E.J., Sandusky, G.E., Hammond, L.J., Moyers, J.S., Owens, R.A.,

et al. (2005). FGF-21 as a novel metabolic regulator. J. Clin. Invest. 115,

1627–1635.

Kharitonenkov, A., Wroblewski, V.J., Koester, A., Chen, Y.F., Clutinger, C.K.,

Tigno, X.T., Hansen, B.C., Shanafelt, A.B., and Etgen, G.J. (2007). The meta-

bolic state of diabetic monkeys is regulated by fibroblast growth factor-21.

Endocrinology 148, 774–781.

Kunii, K., Davis, L., Gorenstein, J., Hatch, H., Yashiro,M., Di Bacco, A., Elbi, C.,

and Lutterbach, B. (2008). FGFR2-amplified gastric cancer cell lines require

FGFR2 and Erbb3 signaling for growth and survival. Cancer Res. 68, 2340–

2348.

LeFeuvre, R.A., Rothwell, N.J., and Stock, M.J. (1987). Activation of brown fat

thermogenesis in response to central injection of corticotropin releasing hor-

mone in the rat. Neuropharmacology 26, 1217–1221.

Lin, Z., Tian, H., Lam, K.S., Lin, S., Hoo, R.C., Konishi, M., Itoh, N., Wang, Y.,

Bornstein, S.R., Xu, A., and Li, X. (2013). Adiponectin mediates the metabolic

effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell

Metab. 17, 779–789.

Lockie, S.H., Heppner, K.M., Chaudhary, N., Chabenne, J.R., Morgan, D.A.,

Veyrat-Durebex, C., Ananthakrishnan, G., Rohner-Jeanrenaud, F., Drucker,

D.J., DiMarchi, R., et al. (2012). Direct control of brown adipose tissue thermo-

genesis by central nervous system glucagon-like peptide-1 receptor signaling.

Diabetes 61, 2753–2762.

Mohammadi, M., Froum, S., Hamby, J.M., Schroeder, M.C., Panek, R.L., Lu,

G.H., Eliseenkova, A.V., Green, D., Schlessinger, J., and Hubbard, S.R.

(1998). Crystal structure of an angiogenesis inhibitor bound to the FGF recep-

tor tyrosine kinase domain. EMBO J. 17, 5896–5904.

Morgan, D.A., and Rahmouni, K. (2010). Differential effects of insulin on sym-

pathetic nerve activity in agouti obese mice. J. Hypertens. 28, 1913–1919.

Morton, G.J., Matsen, M.E., Bracy, D.P., Meek, T.H., Nguyen, H.T.,

Stefanovski, D., Bergman, R.N., Wasserman, D.H., and Schwartz, M.W.

(2013). FGF19 action in the brain induces insulin-independent glucose

lowering. J. Clin. Invest. 123, 4799–4808.

Nedergaard, J., Petrovic, N., Lindgren, E.M., Jacobsson, A., and Cannon, B.

(2005). PPARgamma in the control of brown adipocyte differentiation.

Biochim. Biophys. Acta 1740, 293–304.

Owen, B.M., Bookout, A.L., Ding, X., Lin, V.Y., Atkin, S.D., Gautron, L., Kliewer,

S.A., andMangelsdorf, D.J. (2013). FGF21 contributes to neuroendocrine con-

trol of female reproduction. Nat. Med. 19, 1153–1156.

Potthoff, M.J., Kliewer, S.A., and Mangelsdorf, D.J. (2012). Endocrine fibro-

blast growth factors 15/19 and 21: from feast to famine. Genes Dev. 26,

312–324.
Cell
Rivier, C., Rivier, J., and Vale, W. (1986). Stress-induced inhibition of reproduc-

tive functions: role of endogenous corticotropin-releasing factor. Science 231,

607–609.

Sarruf, D.A., Thaler, J.P., Morton, G.J., German, J., Fischer, J.D., Ogimoto, K.,

and Schwartz, M.W. (2010). Fibroblast growth factor 21 action in the brain in-

creases energy expenditure and insulin sensitivity in obese rats. Diabetes 59,

1817–1824.

Sell, H., Berger, J.P., Samson, P., Castriota, G., Lalonde, J., Deshaies, Y., and

Richard, D. (2004). Peroxisome proliferator-activated receptor gamma ago-

nism increases the capacity for sympathetically mediated thermogenesis in

lean and ob/ob mice. Endocrinology 145, 3925–3934.

Tan, B.K., Hallschmid, M., Adya, R., Kern, W., Lehnert, H., and Randeva, H.S.

(2011). Fibroblast growth factor 21 (FGF21) in human cerebrospinal fluid: rela-

tionship with plasma FGF21 and body adiposity. Diabetes 60, 2758–2762.

Thurlby, P.L., Wilson, S., and Arch, J.R. (1987). Ciglitazone is not itself thermo-

genic but increases the potential for thermogenesis in lean mice. Biosci. Rep.

7, 573–577.

Véniant, M.M., Hale, C., Helmering, J., Chen, M.M., Stanislaus, S., Busby, J.,

Vonderfecht, S., Xu, J., and Lloyd, D.J. (2012a). FGF21 promotes metabolic

homeostasis via white adipose and leptin in mice. PLoS ONE 7, e40164.

Véniant, M.M., Komorowski, R., Chen, P., Stanislaus, S., Winters, K., Hager,

T., Zhou, L., Wada, R., Hecht, R., and Xu, J. (2012b). Long-acting FGF21

has enhanced efficacy in diet-induced obese mice and in obese rhesus mon-

keys. Endocrinology 153, 4192–4203.

Whittle, A.J., Carobbio, S., Martins, L., Slawik, M., Hondares, E., Vázquez,

M.J., Morgan, D., Csikasz, R.I., Gallego, R., Rodriguez-Cuenca, S., et al.

(2012). BMP8B increases brown adipose tissue thermogenesis through both

central and peripheral actions. Cell 149, 871–885.

Wu, A.L., Kolumam, G., Stawicki, S., Chen, Y., Li, J., Zavala-Solorio, J.,

Phamluong, K., Feng, B., Li, L., Marsters, S., et al. (2011). Amelioration of

type 2 diabetes by antibody-mediated activation of fibroblast growth factor

receptor 1. Sci. Transl. Med. 3, ra126.

Xu, J., Lloyd, D.J., Hale, C., Stanislaus, S., Chen, M., Sivits, G., Vonderfecht,

S., Hecht, R., Li, Y.S., Lindberg, R.A., et al. (2009a). Fibroblast growth factor

21 reverses hepatic steatosis, increases energy expenditure, and improves

insulin sensitivity in diet-induced obese mice. Diabetes 58, 250–259.

Xu, J., Stanislaus, S., Chinookoswong, N., Lau, Y.Y., Hager, T., Patel, J., Ge,

H., Weiszmann, J., Lu, S.C., Graham, M., et al. (2009b). Acute glucose-

lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse

models—association with liver and adipose tissue effects. Am. J. Physiol.

Endocrinol. Metab. 297, E1105–E1114.

Zhang, Y., Breevoort, S.R., Angdisen, J., Fu, M., Schmidt, D.R., Holmstrom,

S.R., Kliewer, S.A., Mangelsdorf, D.J., and Schulman, I.G. (2012). Liver LXRa

expression is crucial for whole body cholesterol homeostasis and reverse

cholesterol transport in mice. J. Clin. Invest. 122, 1688–1699.
Metabolism 20, 670–677, October 7, 2014 ª2014 Elsevier Inc. 677


	FGF21 Acts Centrally to Induce Sympathetic Nerve Activity, Energy Expenditure, and Weight Loss
	Introduction
	Results and Discussion
	FGF21 Acts Centrally to Induce Energy Expenditure
	FGF21 Acts Centrally to Induce Thermogenic Genes
	FGF21 Acts on the Hypothalamus
	FGF21 Induces Sympathetic Nerve Activity
	FGF21 Actions Require Corticotropin-Releasing Factor

	Experimental Procedures
	Mouse Studies
	Materials
	Real-Time Quantitative PCR Analyses
	Sympathetic Nerve Activity Measurements
	Statistical Analyses

	Supplemental Information
	Acknowledgments
	References


