Generalized competing event model

Let n, k, and p be the number of observations, covariates, and mutually exclusive event types, respectively. Let z be the number cause-specific events, and p-z be the number of competing events. Let \mathbf{d} represent the k x 1 vector of covariate values, and $\mathbf{1}_m$ represent a m x 1 vector of 1's. Let i be an index of natural numbers ranging from 1 to p. Let λ_{0i} represent the cause-specific hazard for event i, and $\lambda_0 = \sum \lambda_{0i}$ represent the hazard for any event, under a given set of experimental conditions.

We model the cause-specific hazard for event i, under an alternative set of conditions as $\lambda_{1i} = g(\mathbf{X}\boldsymbol{\beta}_i) \ \lambda_{0i}$, for an invertible function $g(\cdot)$, an $n \times k$ data matrix \mathbf{X} , and a $k \times 1$ vector of effect coefficients $\boldsymbol{\beta}_i$. The hazard for any event under the alternative set of conditions is $\lambda_1 = \sum \lambda_{1i} = \sum g(\mathbf{X}\boldsymbol{\beta}_i) \ \lambda_{0i}$ and the hazard ratio is expressed as:

$$\lambda_1 / \lambda_0 = \sum g(\mathbf{X}\mathbf{\beta}_i) \ \lambda_{0i} / \sum \lambda_{0i}$$
 (2)

in other words, the hazard ratio is a weighted average of the effects on the cause-specific hazards under the initial conditions. Here $\boldsymbol{\beta}$ is the $k \times p$ coefficient matrix, with each element $\beta_{v,w}$ representing the effect of covariate v on event w. Note that under the assumption of effect homogeneity with respect to the cause-specific events, $\boldsymbol{\beta}_{i}=\boldsymbol{\beta}_{k}=\boldsymbol{\beta}$ for all $j,k\in\{1,\ldots,p\}$, therefore:

$$\lambda_1 / \lambda_0 = \sum g(\mathbf{X}\boldsymbol{\beta}_i) \ \lambda_{0i} / \sum \lambda_{0i} = \sum g(\mathbf{X}\boldsymbol{\beta}) \ \lambda_{0i} / \sum \lambda_{0i} = g(\mathbf{X}\boldsymbol{\beta}) \sum \lambda_{0i} / \sum \lambda_{0i} = g(\mathbf{X}\boldsymbol{\beta}).$$

Let \mathbf{b}_i be a maximum (partial) likelihood estimator for $\mathbf{\beta}_i$ (e.g., using $\mathbf{g}(\mathbf{x}) = \mathbf{e}^{\mathbf{x}}$);¹ alternatively, we can let \mathbf{b}_i represent an analogous maximum partial likelihood estimator

for sub-distribution hazards.^{2,3} Let $\mathbf{B} = [\mathbf{b}_1 \ \mathbf{b}_2 \ ... \ \mathbf{b}_p]$ be the $k \times p$ matrix of coefficients, with each element $\mathbf{b}_{v,w}$ of \mathbf{B} representing the estimated effect of covariate v on event w. Since columns of \mathbf{B} are interchangeable, we can order the elements of \mathbf{B} such that the first z vectors correspond to events of interest and the remaining p-z vectors correspond to competing events, i.e. $\mathbf{B}_{1,z} = [\mathbf{b}_1 \ \mathbf{b}_2 \ ... \ \mathbf{b}_z]$ and $\mathbf{B}_{z,p} = [\mathbf{b}_{z+1} \ \mathbf{b}_{z+2} \ ... \ \mathbf{b}_p]$, so $\mathbf{B} = [\mathbf{B}_{1,z} \ \mathbf{B}_{z,p}]$. Now using the data vector \mathbf{d} , we construct an individual risk score as follows:

$$R = (\mathbf{d}^{\mathsf{T}} \mathbf{B}_{\mathsf{Z},\mathsf{D}}) \mathbf{1}_{\mathsf{p-z}} - (\mathbf{d}^{\mathsf{T}} \mathbf{B}_{\mathsf{1},\mathsf{Z}}) \mathbf{1}_{\mathsf{z}}$$
(3)

Note that under the assumption of effect homogeneity with respect to the cause-specific events, $\mathbf{b}_{j}=\mathbf{b}_{k}=\mathbf{b}$ for all j, k ϵ {1,...,p}, so R = $\mathbf{cd}^{\mathsf{T}}\mathbf{b}$ for some constant c.

References

- 1. Cox DR. Regression models and life tables. *J R Stat Soc Series B Stat Methodol* 1972;B34:187-220.
- 2. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. *J Am Stat Assoc* 1999;94:496-509.
- 3. Jeong JH, Fine JP. Parametric regression on cumulative incidence function. *Biostatistics* 2007;8:184-196.