Case Conference: SBRT for spinal metastases DANIEL SIMPSON MD 3/27/12 #### Case - 79 yo M with hx of T3No colon cancer diagnosed in 2008 - o metastatic liver disease s/p liver segmentectomy 2009 and SBRT in 2011 - CT abdomen demonstrated a sclerotic lesion in L vertebral body - MRI L-spine done in 2012: 2.1 x 1.6 x 2.4 cm enhancing lesion involving the left posterior half of the L1 vertebral body with no extension into the spinal canal and second ill-defined lesion in posterior third of T12 - Asymptomatic, no pain or neurologic symptoms - o Tx: SBRT to T12 and L1; 24 Gy/3 ## Epidemiology - Spinal metastases account for 70% of bony metastases - 18,000 new cases in North America every year - 70% of patients who die of cancer have spinal metastases at autopsy - <14% are symptomatic</p> Frequencies of primary cancers and metastases seen at M. D. Anderson, 1984–1994* | Primary
Cancer Site | No. of
Cases (%) | No. of Spinal
Metastases (%) | |------------------------|---------------------|---------------------------------| | all sites | 113,831 (100) | 11,884 (100) | | breast | 13,977 (12.3) | 3,592 (25.7) | | blood | 12,907 (11.3) | 1,213 (9.4) | | lung | 10,568 (9.3) | 2,410 (22.8) | | skin | 10,844 (9.5) | 369 (3.4) | | colon | 7,107 (6.2) | 185 (2.6) | | prostate | 6,975 (6.1) | 1,137 (16.3) | | urinary tract | 5,692 (5.0) | 478 (8.4) | | mouth | 5,174 (4.5) | 72 (1.4) | | unknown primary | 4,099 (3.6) | 344 (8.4) | | ovary | 2,916 (2.6) | 17 (0.6) | | uterus | 2,224 (2.0) | 16 (0.7) | | pancreas | 1,637 (1.4) | 10 (0.6) | | bone | 1,167 (1.0) | 14 (1.2) | | other | 28,544 (25.1) | 2,027 (7.1) | ^{*} Patient population was identified through a search of the tumor registry maintained by the Department of Medical Informatics. Perez 5th edition Rose AAOS 2011 ## Pathophysiology - Occur primarily via hematogenous spread - Skeletal blood flow accounts for 4-10% of cardiac output - Skeletal vasculature renders it vulnerable to metastatic deposition - The most common primary sites are breast, lung, and prostate - Lumbar and thoracic spine most common sites - Extradural and intradural - o 95% extradural #### Presentation - Pain is most common (~90%) presenting symptom - Typically constant, present at night - o Can be poorly characterized such as referred pain to the ribs - Neurologic signs frequently preceded by pain - Radiculopathy, myelopathy, cauda equina syndrome ## Diagnostic Imaging - Bone scan is more sensitive than plain films for sclerotic lesions - CT scans are more specific, better for differentiating between - Plain films and CT are helpful for detecting pathologic fracture - MRI spine series is indicated in setting of suspected neurologic compromise - PET/CT similar sensitivity to bone scan, but higher specificity - Not effective for more differentiated tumors, ie. Prostate cancer #### **Conventional Radiation** - Symptomatic relief with conventional RT (ie. 30/10, 8/1) provides unsatisfactory results - RTOG 97-14 - o Arm 1) RT 8/1 vs. Arm 2) 30/10. Primary outcome pain relief at 3 months - Outcome: 3-month complete pain relief 8/1 15% vs. 30/10 18% (NS); partial 50% vs. 48% (NS); stable 26% vs 24%; progressive 9% vs 10% - TROG 96.05 - Randomized trial of 8 Gy in 1 versus 20 Gy in 5 fractions - o Response rate: 53% vs. 61% (p=NS) - o TTF 2.4 mo vs. 3.7 mo ## Image-Guided and Intensity-Modulated Radiosurgery for Patients with Spinal Metastasis - Ryu et al. (Cancer 2003) - 10 patients; All pts received external beam radiation therapy (25 Gy/10) followed by SBRT (6–8 Gy single dose) to the site of the spine involvement or spinal cord compression - Time to pain relief 2-4 weeks TABLE 1 Patient Characteristics and Radiosurgery Doses with Clinical Outcome | Diagnosis | Pathology | Site | Radiosurgery
(Gy) | Outcome ^a | |------------------|----------------------|-------|----------------------|--| | Lung cancer | Squamous cell | 12 | 6 | Pain relief with reduced medication | | Multiple myeloma | Plasma cell | T7-T8 | 6 | Pain reduced at 4 weeks, complete relief at 4 months | | Breast cancer | Invasive ductal cell | T7 | 6 | Pain relief 7/10→4/10, progressed at other sites | | Multiple myeloma | Plasma cell | T6-T7 | 6 | Pain relief at 1 week, progressed at other sites | | Hodgkin disease | Type undetermined | T6 | 8 | Pain relief at 1 week, motor recovery 0/5→5/5 | | Plasmacytoma | Plasma cell | T2 | 6 | Pain relief with reduced medication | | Prostate cancer | Adenocarcinoma | Ll | 6 | Pain relief at 2 weeks, motor recovery 0/5→3/5 | | Prostate cancer | Adenocarcinoma | T11 | 6 | Pain relief 9/10→3/10 | | Breast cancer | Invasive ductal cell | T3 | 6 | Pain relief by surgery | | Breast cancer | Invasive ductal cell | T10 | 8 | Pain relief at 1 week | Gy: grays Numeric values indicate motor strength or pain scores. #### Radiosurgery for Spinal Metastases Clinical Experience in 500 Cases From a Single Institution Peter C. Gerszten, MD, MPH, Steven A. Burton, MD, Cihat Ozhasoglu, PhD, and William C. Welch, MD, FACS - Prospective cohort study. 500 cases of spinal metastases (cervical 15%, thoracic 42%, lumbar 22%, sacral 20%), treated with radiosurgery - Maximum dose 12.5-25 Gy (mean 20 Gy). Prior EBRT 69% (typically 30/10 or 35/14) - PTV = GTV - Long-term pain control 86%; at least some improvement in neurologic function in 85% ## Table 3. Summary of Pain and Radiographic Outcome for the 4 Most Common Histopathologies (n = 294) | Long-term pain improvement | | |--------------------------------|------| | All patients | 86% | | Renal cell | 94% | | Breast | 96% | | Lung | 93% | | Melanoma | 96% | | Long-term radiographic control | | | All patients | 88% | | Renal cell | 87% | | Breast | 100% | | Lung | 100% | | Melanoma | 75% | Spine 2007 ## Pain Control by Image-Guided Radiosurgery for Solitary Spinal Metastasis Samuel Ryu, MD, Ryan Jin, MD, Jian-Yue Jin, PhD, Qing Chen, PhD, Jack Rock, MD, Joseph Anderson, MD, and Benjamin Movsas, MD Departments of Radiation Oncology (S.R., R.J., J.-Y.J., Q.C., B.M.), Neurosurgery (S.R., J.R.), and Medical Oncology (J.A.), Henry Ford Hospital, Detroit, Michigan, USA - 49 patients with 61 separate spinal metastases were treated with radiosurgery - Dose ranged from 10-16 Gy, single fraction - PTV = involved spinal segment - Median time to pain relief 14 days, fastest 24 hrs - 1 yr overall pain control rate 84% - Strong trend of increasing pain control with dose ≥ 14 Gy ## HIGH-DOSE, SINGLE-FRACTION IMAGE-GUIDED INTENSITY-MODULATED RADIOTHERAPY FOR METASTATIC SPINAL LESIONS Yoshiya Yamada, M.D., F.R.C.P.C.,* Mark H. Bilsky, M.D.,† D. Michael Lovelock, Ph.D.,‡ Ennapadam S. Venkatraman, Ph.D.,§ Sean Toner, M.S.,‡ Jared Johnson, B.S.,* Joan Zatcky, N.P.,* Michael J. Zelefsky, M.D.,* and Zvi Fuks, M.D.* Departments of *Radiation Oncology, †Neurosurgery, †Medical Physics, and §Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY - 103 spinal metastases in 93 pts without high-grade epidural spinal cord compression were treated with image-guided intensity-modulated RT to doses of 18-24 Gy (median, 24 Gy) in a single fraction between 2003 and 2006 - The spinal cord dose was limited to a 14-Gy maximal dose - Actuarial LC 90% at 15 mos - Radiation dose predicted for local control Fig. 3. Local control probability by dose. Statistically significant difference noted for patients treated to 2,400 cGy vs. 1,800–2,300 cGy. #### Pattern of Failure #### Ryu et al (J Neurosurg 2004) - No failures in adjacent vertebral bodies if single segment treated in 49 patients - Suggests treating segments above and below is unnecessary #### Chang et al. (J Neurosurg 2007) - o 63 patients with 74 spinal metastases underwent radiosurgery - SBRT dose ranged from 27-30 Gy in 3-5 fxs - Areas of failure 1) posterior elements and pedicles (17%), and 2) recurrence in the epidural space adjacent to the spinal cord (47%) - Authors recommended routine inclusion of the pedicles and posterior elements ## Pattern of failure Cases involving imaging documentation of tumor progression* | Tumor
No. | Patient
Age (yrs) | Histology | Original
Site | Level | Tumor
Vol (cm³) | TTP
(mos) | Prior
Treatments | POF | Comment | |--------------|----------------------|-----------|---------------------|-----------|--------------------|--------------|---------------------|----------------------------|-------------------| | 1 | 44 | oncocytic | VB | T-11 | 24.1 | 4 | VS, RT | ped, lam | PE† | | 2 | 54 | HC | VB | T5-7 | 30.5 | 2.9 | none | ES | PE† | | 3 | 69 | RCC | prevertebral,
VB | T8-10 | 113 | 3.5 | Vst, RT | ES | PE†, dose‡ | | 4 | 67 | RCC | VB | T-12 | 42 | 3.4 | kypho | VB | dose‡ | | 5 | 82 | RCC | VB | T4-5 | 33.8 | 3.9 | VS, RT | prevertebra,
paraspinal | MF | | 6 | 49 | LMS | VB | L-2 | 30.1 | 15.7 | none | ES | dose‡ | | 7 | 67 | RCC | VB | L-2 | 42 | 3.4 | kypho | VB | dose‡ | | 8 | 82 | RCC | VB | L-1 | 27.9 | 12.0 | RT | ES ALL to
L-2 | dose‡ | | 9 | 54 | RCC | paraspinal | L-4 | 75 | 3.0 | none | ped, PM | IFF | | 10 | 60 | ASC | presacral space | S-1 | 32.2 | 9.8 | RT | presacral
space | IFF | | 11 | 66 | OCCA | paraspinal | L-5 | 54.8 | 21.9 | none | pelvic
side-wall | MF | | 12 | 58 | LA | paraspinal | C7-T2 | 12.7 | 1.9 | RT | ES | IFF | | 13 | 43 | RCC | VB | T-11 | 39.3 | 36.6 | none | ped, para-
vertebral | PE† | | 14 | 61 | RCC | paraspinal | T6-7 | 39 | 17.5 | none | T-6, VB,
ES | MF | | 15 | 23 | LMS | paraspinal | L3-5 | 358 | 6.3 | PRS | ES, VB, para-
vertebral | IFF | | 16 | 50 | LA | VB | L-1 + L-3 | 149 | 12.4 | none | VB collapse, | salvaged
w/ VS | | 17 | 47 | breast | PE | T10-11 | 32.4 | 4.3 | RT | ES, LMD | dose‡ | ## Kyphoplasty + SBRT - Gerszten et al. (Neurosurg focus 2005) - 26 patients with symptomatic compression fractures without canal compromise - Treated with kyphoplasty followed by SBRT (mean 12 days post-op) - 16-20 Gy (mean 18) single fraction prescribed to 80% - Overall pain improvement 92% #### **Outcomes** Table 3. Summary of clinical outcomes for spinal SBRS | Author/year
(study period) | Total no.
tumor/patient | No. retx
tumor/patient | Follow-up
months
(range) | Target volume/
contouring
imaging
technique | Local control/
criteria | Tumor dose/no.
fx/Rx isodose | Pain palliation
from SBRS (Pain
Measure Tool) | |---|----------------------------|---------------------------|--------------------------------|---|--|---|--| | Unirradiated pati | ents | | | | | | | | Ryu <i>et al.</i> ,
2004 (20)
(May 2001–
May 2003) | 61/49 | 0/0 | 6–24 | Involved spinal
segment/CT
or MRI | 57 of 61* (93%)/
imaging and
pain [†] | 10-16 Gy/1/N.R. | 52/61 combined
CR and PR
(verbal/visual
analog scale +
0–10 pain
score) | | Ryu et al.,
2003 (12)
(April 2001–
December
2001) | 10/10 | 0/10 | Mean 6 (3–12) | Site of spine
involvement/
CT or MRI | 10/10 (100%)/
imaging
and pain [†] | EBRT: 25 Gy/10
and SBRS
boost: 6–8 Gy/
1/90% | | | Reirradiated pati | ents | | | | | | | | Milker-Zabel
et al., 2003
(27) (June
1997–
December | 19/18 | 19/18 | Median 12
(4–33) | PTV = GTV plus
entire VB/CT
with MRI
fusion | 18/19 (95%)/
imaging [†] | 24–45 Gy/aim
was 90%
Median 39.6
Gy/2/N.R. | 13/16 (N.R.) | | 2001)
Hamilton
et al., 1995
(36) (N.R.) | 5/5 | 5/5 | Median 6 (1–12) | GTV + areas
suspicious of
extension/CT | 5/5 (100%)/
imaging or
clinical [†] | 8–10 Gy/1/80–
160% Median
10 Gy/1/80% | N.R. | | Mahan et al.,
2005 (24)
(N.R.) | 8/8 | 8/8 | Mean 15.2 | PTV: GTV + 3
mm excluding
the cord
volume/CT | 8/8 (100%) N.R. | 20–34 Gy/10–
17/N.R.
Median 30
Gy/15/N.R. | 6/8 CR 2/8 PR
(N.R.) | Overall pain relief ranged from 67 to 100% Multiple PTV definitions used ## Outcomes | | | | | //)) | | | | |---|-------|---------|------------------------|--|--|---|--| | Postoperative SBRS patients | | | | W voidine/C i | | Оу/1 <i>Э</i> /1 Т. К. | | | Rock et al.,
2006 (23)
(N.R.) | 18/18 | 1/1 | Median 7 (4–36) | enhancing
margin/CT
with MRI
fusion | 17/18 (94%)/
imaging
or clinical [†] | 4/18: EBRT 25
Gy/10 plus
SBRT boost
6–8 Gy /1/
90% Median:
6 Gy/1/90%
14/18: SBRT
only 10–14
Gy/1/90%
Median: 14
Gy/1/90% | 6/18 CR (N.R) | | Gerszten
et al., 2005
(52) (N.R.) | 26/26 | חר | Median 16
(11–24) | Postkyphoplasty
VB plus areas
of extension/
CT | 24/26 (92%)/
pain [†] | 16–20 Gy/1/80%
Mean 18 Gy/
1/80% Max
intratumoral
dose 16–20
Gy | Improved 24/26
(10-point
verbal visual
analog scale) | | Mixed patients Chang et al., 2007 (17) (November 2002–March 2005) | 74/63 | N.R./35 | Median 21.3
(1–50) | GTV plus
potential
spinal
structures of
extension/CT | 57/74 (77%)
1-year FFP:
84%/imaging | (32/63) 6 Gy/5 or
(31/63) 9 Gy/3
Prescribed to
an isodose line
allowing 80–
90% target
coverage | Narcotic use
declined from
60% to 36% at
6 months
(Brief Pain
Inventory and
Narcotic
Usage) | | Sahgal <i>et al.</i> ,
2007 (22)
(April 2003–
August 2006) | 60/38 | 37/26 | Median 8.5
(0.5–48) | GTV = PTV/CT | 52/60 (87%)
1-year FFP:
85 % [§] /
imaging
and pain | 8–30 Gy/1–5/
46–78%
Median: 24
Gy/3/64% | 31/46 improved
(N.R.) | Sahgal IJROBP 2008 #### Outcomes Table 3. Summary of clinical outcomes for spinal SBRS (Continued) | Author/year
(study period) | Total no.
tumor/patient | No. retx
tumor/patient | Follow-up
months
(range) | Target volume/
contouring
imaging
technique | Local control/
criteria | Tumor dose/no.
fx/Rx isodose | Pain palliation
from SBRS (Pain
Measure Tool) | |--|----------------------------|---------------------------|--------------------------------|--|--|---|---| | Gibbs et al.,
2007 (28)
(1996–
September
2005) | 102/74 | 50 /N.R. | Mean 9 (0-33) | Target lesion +
up to 2-mm
margin/CT | N.R. | 14–25 Gy/1–5/
61–89% | N.R. specifically
for pain (N.R.) | | Gerszten
et al., 2007
(19) (N.R.) | 500/393 | 344/N.R. | Median 21
(3–53) | PTV = GTV/CT | 440/500 (88%)/
imaging [†] | Maximum
intratumor
dose 12.5–25
Gy/1/N.R.
Mean 20 Gy/
1/N.R. 7/500
combined
EBRT plus
SBRT boost
and doses
N.R. | 290/336
improvement
(10-point
visual analog
scale) | | Yamada <i>et al.</i> ,
2005 (18)
(N.R.) | 21/21 | 1/1 | Median 7 (1–24) | PTV = GTV + 1
cm except at
cord interface/
CT | 19/21 (90%) and actuarial: 81% /imaging [†] | 20–30 Gy/N.R./
N.R. Median
= 20 Gy/5
fractions | N.R. for
metastases
patients only
(0-10 self-
assessed pain
scale) | ### **ASTRO Consensus** | Characteristic | Inclusion | Exclusion | |----------------|---|---| | Radiographic | 1) Spinal or paraspinal metastasis by MRI (50, 51) | 1) Spinal MRI cannot be completed for any reason (50, 51) | | | No more than 2 consecutive or 3 noncontiguous
spine segments involved (50–53) | Epidural compression of spinal cord or cauda equina Spinal canal compromise >25% (58) | | | opine organism in orda (co co) | 4) Unstable spine requiring surgical stabilization (50, 51, 54, 57) | | | | Tumor location within 5 mm of spinal cord or cauda
equina (50, 51) (relative*) | | Patient | 1) Age ≥18 y (50, 54) | Active connective tissue disease (50) | | | 2) KPS of \geq 40–50 (50, 51, 54, 55) | 2) Worsening or progressive neurologic deficit (50–52, 57) | | | 3) Medically inoperable (or patient refused surgery) | 3) Inability to lie flat on table for SBRT (50-52) | | | (50, 51) | 4) Patient in hospice or with <3-month life expectancy | | Tumor | 1) Histologic proof of malignancy (50, 51, 56) | 1) Radiosensitive histology such as MM ⁵⁰⁻⁵² | | | 2) Biopsy of spine lesion if first suspected metastasis 3) Oligometastatic or bone only metastatic disease (50) | 2) Extraspinal disease not eligible for further treatment ⁵¹ | | Previous | Any of the following: | 1) Previous SBRT to same level | | treatment | 1) Previous EBRT <45-Gy total dose | 2) Systemic radionuclide delivery within 30 days before | | treatment | 2) Failure of previous surgery to that spinal level (50–52) | SBRT (50–52) | | | 3) Presence of gross residual disease after surgery | 3) EBRT within 90 days before SBRT (50–52) | | | 3) I reserve of gross residual disease after surgery | 4) Chemotherapy within 30 days of SBRT (50–53) | #### **RTOG 0631** ## PHASE II/III STUDY OF IMAGE-GUIDED RADIOSURGERY/SBRT FOR LOCALIZED SPINE METASTASIS | | PHASE II COMPONENT | | | | | | |---|-------------------------------|--|--|--|--|--| | R | | | | | | | | E | | | | | | | | G | Radiosurgery/SBRT: | | | | | | | I | Single fraction dose of 16 Gy | | | | | | | S | | | | | | | | T | | | | | | | | E | | | | | | | | R | | | | | | | | | PHASE III COMPONENT | | | | | | | |---|----------------------------|---|--|--|--|--|--| | S | | R | | | | | | | T | Number of Spine Metastases | Α | Arm 1: Radiosurgery/SBRT: | | | | | | R | 1) 1 | N | Single fraction dose of 16 or 18 Gy** | | | | | | Α | 2) 2-3 | D | | | | | | | T | | 0 | Arm 2: External Beam Radiation Therapy: | | | | | | I | Type of Tumor | M | Single fraction dose of 8 Gy | | | | | | F | 1) Radioresistant tumor* | I | | | | | | | Υ | 2) Other | Z | Randomization ratio (Arm 1: Arm 2) = 2:1 | | | | | | | | E | | | | | | | | Intended Radiosurgery/SBRT | | | | | | | | | Single Fraction Dose** | | | | | | | | | 1) 16 Gy | | | | | | | | | 2) 18 Gy | | | | | | | #### RTOG 0631 #### PHASE II/III STUDY OF IMAGE-GUIDED RADIOSURGERY/SBRT FOR LOCALIZED SPINE METASTASIS - <u>2.1</u> Primary Objective (8/30/11) 2.1.1 - Phase II Component Determine the feasibility of successfully delivering image-guided radiosurgery/SBRT for spine metastases in a cooperative group setting - Phase III Component 2.1.2 Determine whether image-guided radiosurgery/SBRT (single dose of 16 or 18 Gy) improves pain control (as measured by the 11 point NRPS) as compared to conventional external beam radiotherapy (single dose of 8 Gy) - 2.2 2.2.1 Secondary Objectives (Phase III Component) (11/6/09) - Determine whether image-guided radiosurgery/SBRT improves the rapidity of pain response at the treated site(s) as compared to conventional external beam radiotherapy, as measured by the NRPS: - Determine whether image-guided radiosurgery/SBRT increases the duration of pain response 2.2.2. at the treated site(s), as compared to conventional external beam radiotherapy, as measured by the NRPS; - 2.2.3 Compare adverse events between the two treatments according to the criteria in the CTEP Active Version of the CTCAE: - 2.2.4 Evaluate the long-term effects (24 months) of image-guided radiosurgery/SBRT on the vertebral bone (such as compression fracture) and the spinal cord by MRI; #### **RTOG 0631** #### PHASE II/III STUDY OF IMAGE-GUIDED RADIOSURGERY/SBRT FOR LOCALIZED SPINE METASTASIS #### Target volumes - Based on MR fused T1 and T2 images - o Should include the entire vertebral body and the pedicles as well as paraspinal (≤ 5 cm) and epidural (≥ 3 mm from cord) components #### **RTOG 0631** #### PHASE II/III STUDY OF IMAGE-GUIDED RADIOSURGERY/SBRT FOR LOCALIZED SPINE METASTASIS #### Spinal cord contouring - Partial cord volume (5-6 mm above and below target) based on fused T1 and T2 images - O Dose constraint set at 10 to 10% of partial spinal cord volume - Max dose of 14 Gy to 0.03 cc ## Summary - Dose escalation provides potential to improve local control and symptom relief over conventional treatment especially in the setting of oligometastases and prolonged survival - SBRT makes dose escalation possible while limiting dose to the spinal cord - Rapid pain control - Spares bone marrow especially in patients with multiple segments involved - Shorter overall treatment time more convenient and less likely to interfere with systemic therapy