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Original Article

HIV viral kinetics and T cell dynamics in 
antiretroviral naïve persons starting an 
integrase strand transfer inhibitor and 
protease inhibitor regimen
Maile Y. Karris1  , Sonia Jain2, Tyler R.C. Day3  , Josué Pérez-Santiago1, 
Miguel Goicoechea4, Michael P. Dubé5, Xiaoying Sun2, Celsa Spina6, 
Eric S. Daar7,8, Richard H. Haubrich9, Sheldon Morris1,2 for the California 
Collaborative Treatment Group (CCTG) 589 Study Team
1Department of Medicine, University California San Diego, San Diego, CA, USA, 2Department of Family 
and Preventive Medicine, University California San Diego, San Diego, CA, USA, 3Department of Medicine, 
Washington University, Saint Louis, MO, USA, 4Department of Medicine, Scripps Health San Diego, CA, USA, 
5Department of Medicine, University Southern California Keck School of Medicine, Los Angeles, CA, USA, 
6Department of Pathology, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA, 7Los Angeles 
Biomedical Research Institute, Harbor-UCLA Medical Center, Los Angeles, CA, USA, 8David Geffen School of 
Medicine, UCLA, Los Angeles, CA, USA, 9Gilead Sciences, Forest city, CA, USA

Background: Nucleos(t)ide reverse transcriptase inhibitor (NRTI)-sparing regimens may potentially minimize 
antiretroviral (ART) toxicities, but demonstrate mixed efficacy and toxicity results. The impact of an integrase 
strand transfer inhibitor (INSTI) and protease inhibitor (PI) regimen on HIV viral dynamics and T cell kinetics 
remains underdescribed.
Objective: To compare the effect of raltegravir + ritonavir boosted lopinavir (RAL + LPV/r) to efavirenz/tenofovir 
disoproxil fumarate/emtricitabine (EFV/TDF/FTC) on HIV kinetics and T cell dynamics.
Methods: Fifty participants naïve to ART underwent HIV viral kinetic sampling evaluated using biexponential 
mixed effects modeling. A subset of 28 subjects (with complete viral suppression) underwent flow cytometry 
and evaluation of soluble markers of inflammation at weeks 0, 4, and 48 of ART.
Results: RAL + LPV/r compared to EFV/TDF/FTC resulted in a prolonged first phase viral decay rate (18 vs. 
13 days p < 0.01). From weeks 0 to 4, RAL + LPV/r was associated with a trend toward greater decreases in 
activated CD4+ T cells (−3.81 vs. −1.18 p = 0.09) and less decreases in activated effector memory CD4+ T cells 
(−0.63 vs. −2.69 p-0.07). These trends did not persist to week 48. No differences were noted at any time point 
for soluble markers of immune activation.
Conclusions: The prolonged first phase viral decay observed with RAL + LPV/r in persons starting ART did 
not result in differences in viral suppression at week 48. We also observed trends in declines in certain cellular 
markers of immune activation but it remains unclear if this could translate to long-term immunologic benefits in 
persons on an INSTI + PI.

Keywords:  NRTI sparing, T cell dynamics, Immune activation, Viral kinetics, Antiretroviral naïve, INSTI-PI regimen, CCTG 589

Introduction
Currently recommended combined antiretroviral therapy 
(cART) regimens for use in persons with HIV infection 
naïve to cART all include nucleos(t)ide reverse tran-
scriptase inhibitors (NRTIs).1 However, the use of some 
NRTIs is associated with adverse effects2–5 and this drug 
class is frequently subject to transmitted drug resistance.6, 7  

Early NRTI-sparing studies were pursued due to use 
of didanosine (ddI), stavudine (D4T), and zidovudine 
(ZDV), which are no longer recommended by guidelines 
due to clinical and long-term toxicities. Several studies 
in cART experienced patients that undergo a switch from 
an NRTI-containing regimen to an NRTI-sparing regi-
men suggest the removal of specific NRTI agents from 
a cART regimen improves mitochondrial toxicity and 
lipoatrophy (d4T, ddI, ZDV),8, 9 bone and renal diseases 
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(tenofovir disoproxil fumarate [TDF]),10 and cardiovas-
cular risk (ABC)11, 12 adding support to the use of NRTI-
sparing regimens. Riddler et al. (ACTG A5143) reported 
that participants naïve to cART who initiated the NRTI-
sparing regimen of lopinavir-ritonavir (LPV/r) + efavirenz 
(EFV) had similar virologic efficacy when compared to 
EFV + TDF and emtricitabine (FTC), but did have greater 
clinical and lipid toxicity and greater levels of drug resist-
ance at virologic failure.13 More recent studies of NRTI-
sparing regimens have included newer antiretrovirals and 
have mostly demonstrated similar virologic responses14–19 
but several studies have found inferior virologic response 
in subjects with low CD4 or HIV RNA > 100,000 cop-
ies/mL.19 Also some combinations (raltegravir [RAL] 
+ atazanavir [ATV]) may still be suboptimal to current 
standards of care because of the emergence of drug resist-
ance mutations.15

While the virologic efficacy of NRTI-sparing regimens 
remains debated, research has revealed both potential 
benefits and risks to treating naïve HIV-infected persons. 
Participants in ACTG A5142 enrolled in the NRTI-sparing 
arm (LPV/r + EFV) were less likely to demonstrate lipoat-
rophy than NRTI regimens with d4T and ZDV, but similar 
to TDF-containing regimens.20 This study evaluated older 
NRTIs and in the current era, issues such as lipoatrophy 
may be less relevant. However, issues such as decreases 
in bone mineral density are relevant as our HIV popu-
lation ages; a more recent study did demonstrate that 
DRV/r + RAL had significantly less reduction in bone 
mineral density,18 compared to DRV/r + FTC/TDF.21, 22

We recently reported that an NRTI-sparing regimen 
of RAL + LPV/r compared to EFV/TDF/FTC had sim-
ilar virologic outcomes in HIV-infected persons naïve 
to antiretroviral therapy (California Collaborative Trials 
Group 589 or CCTG 589).23 This paper further evalu-
ates the impact of an INSTI + PI regimen on HIV viral 
kinetics, T cell subset dynamics, and soluble markers of 
inflammation which may impact the infectious period 
prior to complete suppression as well as chronic inflam-
mation and subsequent development of HIV-associated 
non-AIDS diseases.24–26

Methods
Patient population and study design
This manuscript reports the viral kinetic results of CCTG 
589 (NCT00752856) and the results of a planned immu-
nologic sub-study. CCTG 589 was a 1:1 randomized 
open-label 48-week pilot study comparing EFV/TDF/FTC, 
a fixed dose combination of a non-nucleoside reverse tran-
scriptase inhibitor (NNRTI), and NRTIs to RAL + LPV/r, 
a twice daily integrase strand transfer inhibitor (INSTI) 
and protease inhibitor (PI) in HIV-infected (plasma HIV-1 
RNA ≥ 5000 copies/mL and a CD4 cell count ≥ 50 cells/

mm3), treatment-naïve subjects. All study participants 
underwent informed consent prior to entry of the study 
and received a random study number to ensure patient ano-
nymity. Study procedures were subject to approval by local 
IRBs. Eligibility criteria have previously been described.23 
Study participants underwent intensive monitoring of viral 
decay dynamics with plasma HIV-1 RNA measurements at 
baseline and days 2, 7, 10, and 14 followed by viral loads 
at weeks 4, 8, 12, 16, 24, 36, and 48.

The immunologic sub-study evaluates the participants 
of CCTG 589 that achieved virologic suppression by week 
24 and maintained suppression to week 48 (Supplemental 
Figure 1).

Evaluations of cellular immune activation
Fresh whole blood was collected from participants at 
study entry (week 0), weeks 4 and 48 of study, and pro-
cessed using density gradient centrifugation to obtain via-
ble peripheral blood mononuclear cells (PBMCs). PBMCs 
were washed and aliquoted into tubes at concentration of 
1 million PBMCs/200 uL prior to incubation with Aqua 
live/dead (Invitrogen, Grand Island, NY) and conjugated 
antibodies (Becton Dickinson and Co., Franklin Lakes, 
New Jersey) to CD3 (APC-Cy7), CD4 (PerCP-Cy5.5), 
CD8 (Pac-Blue), CD45RA (PE), CD27 (APC), CCR5 
(FITC), CCR7 (PE-Cy7), HLA-DR (FITC), CD38 (PE-
Cy7), CCR6 (PE-Cy7), and CD28 (PE-Cy7).27 Conjugated 
antibodies to intracellular FoxP3 (FITC), intracellular 
IgG1 (FITC), and intracellular Ki67 (FITC) were used 
with fixation and permeability buffers (eBioscience, San 
Diego, CA), per manufacturer instructions. Samples were 
run on the BDFACSCanto (BD Biosciences, San Jose, 
CA) and data analyzed with FlowJo software (Tree Star 
Inc, Ashland, OR).

Evaluations of soluble markers of the immune 
system
Blood plasma samples were collected from participants 
at weeks 0 and 48 and stored at −80 °C until the time 
of analysis. Interleukin-6, soluble CD163 (sCD163), and 
soluble CD14 (sCD14) were evaluated using Quantikine 
ELISA Kits (R&D Systems, Minneapolis MN).

Statistical analysis
To study the viral kinetics, the first 8 weeks of HIV-1 RNA 
data were used. Response profiles that were inconsistent 
with monotonic viral level decay were truncated at the first 
signs of rebound (defined as an increase of >0.3 log10 cop-
ies/ml from the previous observation). The biexponential 
model requires a monotonic viral decay pattern. Thus, data 
points were removed for three subjects: one in the EFV/
TDF/FTC group and two in the RAL + LPV/r group. All 
exclusions occurred at or after week 4.
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A parametric non-linear mixed effects model was used 
to fit the viral dynamic model to the remaining data. The 
model takes a bi-exponential form for HIV-1 RNA copies/
mL and is fitted to data on a log10 scale to normalize the 
error distribution. Estimation of the model uses a Newton–
Raphson algorithm with an embedded multiple imputation 
to randomly impute for HIV-1 RNA levels censored below 
50 copies/mL. Empirical Bayes estimates of the first and 
second phase decay rates from this model were compared 
between treatment groups with non-parametric Wilcoxon 
tests. In the event of between-group differences, group- 
specific biexponential mixed effect models were fitted.

To study the T cell dynamics, baseline characteristics 
of this subset population were summarized by treatment 
groups and overall. For each of CD4 and CD8 T cell subset 
outcomes, mixed model repeated measures analysis was 
performed. The model included change from baseline in 
each outcome at weeks 4 and 48 as the dependent variable, 
treatment, visit, treatment-by-visit interaction, and baseline 
value as fixed effects. Visit was treated as a categorical var-
iable and an unstructured variance–covariance error matrix 
was applied. Differences in least-square means between the 
treatment groups were reported. A p-value of <0.05 was 
considered statistically significant. As there were no statisti-
cally significant findings in planned immunologic analyses, 
no adjustments were made for multiple comparisons. For 
exploratory outcomes, all values with a p-value of <0.1 were 
reported. As these outcomes were exploratory, we did not 
adjust for multiple comparisons. Statistical analyses were 
performed in R (http://cran.r-project.org), version 2.14.0.

Results
Study participants
The demographics of study participants in CCTG 589 
have been previously described.23 CCTG 589 screened 

65 subjects over one year and 51 met entry criteria and 
were randomized to either RAL + LPV/r (n = 26) or EFV/
TDF/FTC (n = 25). Fifty underwent intensive viral kinet-
ics (Supplemental Figure 1). We previously demonstrated 
that use of RAL + LPV/r compared to EFV/TDF/FTC had 
lower viral suppression rates at week 4 (54% vs. 12% 
p = 0.003), but no differences in viral suppression between 
the two groups was observed at weeks 8 or 48.23

Differences in viral kinetics
To better characterize the virologic response to 
RAL  +  LPV/r compared to EFV/TDF/FTC, we evalu-
ated viral kinetics using biexponential modeling. Use of 
RAL + LPV/r resulted in a slower first phase viral decay 
rate median = 0.47, (IQR: 0.42–0.52) compared to EFV/
TDF/FTC median = 0.55, (IQR: 0.52–0.58) (p < 0.001). 
In spite of this slower decay rate, RAL + LPV/r prolonged 
phase 1 viral decline median = 18 days, (IQR: 16–22) vs. 
median = 13 days, (IQR: 12–13; p < 0.001) resulting in 
lower viral loads at the time of transition from Phase 1 to 
Phase 2 viral decay median = 1.96 log10 copies/mL (IQR: 
1.83, 2.37) vs. median = 2.82 log10 copies/mL (IQR: 2.46, 
2.97) (Figure 1 with data in Table 1). The second phase 
viral decay rates were similar between RAL + LPV/r and 
EFV/TDF/FTC (Table 1).

Description of immunologic sub-study 
population who achieved and maintained viral 
suppression
At weeks 24 and 48, a total of 28 (62.2%) participants 
maintained virologic suppression and were included in 
an apriori immunologic sub-study (Supplemental Figure 
1). Of the persons who achieved and maintained viro-
logic suppression, those who initiated EFV/TDF/FTC 
and persons who initiated the NRTI-sparing regimen 

Figure 1  Viral kinetics RAL + LPV/r compared to EFV/TDF/FTC.
Note: HIV viral kinetics using biexponential modeling demonstrates a slower but prolonged phase 1 decay in RAL + LPV/r.

http://cran.r-project.org
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RAL  +  LPV/r did not differ by age, gender, ethnicity, 
or race. Despite randomization, at baseline, persons who 
initiated RAL + LPV/r were more likely to report heter-
osexual sex and intravenous drug use (IDU) as routes of 
transmission of HIV (p = 0.014) (Table 2).

Cellular markers of proliferation and immune 
activation
In previous trials, use of RAL  +  LPV/r compared to 
EFV/TDF/FTC does not significantly impact CD4 + T 
cell counts.23 To build on this work and better under-
stand if an INSTI + PI regimen impacts specific T cell 
subset dynamics, we performed analyses of activated 
and proliferating CD4+ and CD8+ T cells with a specific 
focus on mature T cell subsets (central memory, effector 
memory, and effector cells). At study entry, participants 
had similar percentages of activated central memory 
(CD4+CD45RA-CD27+CD38+) and effector memory 
(CD4+CD45RA-CD27-CD38+) CD4+ T cells and activated 
central memory (CD8+CD45RA-CD27+CD38+) and effec-
tor (CD8+CD45RA-CD27-CD38+) CD8+ T cells.

Analyses of CD4+ T cell dynamics reveal persons tak-
ing RAL + LPV/r had a trend for a greater decrease in 
activated (CD4+CD38+) CD4+ T cells mean change −3.81 
(95% CI: −6.12, −1.51) compared to persons taking EFV/
TDF/FTC −1.18 (95% CI: −3.17,0.80) (p = 0.092) from 
weeks 0 to 4, but this effect did not persist on evaluations 
of T cell dynamics of weeks 0 to 48 (Table 3). Conversely, 
we noted a trend for less decreases in activated effec-
tor memory (CD4+CD45RA-CD27-CD38+) CD4+ T cells 
–0.63 (95% CI: −2.31, 1.06) in the RAL + LPV/r arm 
compared to EFV/TDF/FTC −2.69 (95% CI: −4.15, 
−1.23) (p = 0.07) from weeks 0 to 4 without any difference 
in rate of change from weeks 0 to 48 (Table 3). There were 
no statistically significant differences or trends noted in 

Table 1  Comparison of empirical Bayes parameter estimates between arms

Note: A – RAL + LPV/r B- EFV/TDF/FTC.

N Mean SD Min Q1 Median Q3 Max p value

d1 (first phase of decay)
A 24 0.553 0.042 0.486 0.517 0.547 0.582 0.647
B 26 0.473 0.068 0.356 0.418 0.473 0.521 0.597
Overall 50 0.511 0.069 0.356 0.473 0.517 0.563 0.647 <0.0001
d2 (second phase of decay)
A 24 0.042 0.025 0.003 0.024 0.032 0.064 0.084
B 26 0.033 0.013 0.006 0.024 0.030 0.038 0.063
Overall 50 0.037 0.020 0.003 0.024 0.031 0.046 0.084 0.34
Transition time
A 24 12.92 1.075 10.655 12.275 12.829 13.267 15.499
B 26 18.423 4.076 11.389 15.633 17.854 21.64 28.422
Overall 50 15.782 4.09 10.655 12.752 13.974 17.9 28.422 <0.0001
HIV-1 RNA at transition time
A 24 2.716 0.389 1.78 2.459 2.817 2.973 3.486
B 26 2.110 0.42 1.512 1.833 1.962 2.368 3.020
Overall 50 2.401 0.505 1.512 1.957 2.424 2.844 3.486 <0.0001

Table 2  Baseline characteristics of immunologic sub-study 
participants

Notes: IDU – intravenous drug use.
Continuous measures reported as median (IQR), categorical 

measure reported as number(%).

Demographics

RAL + LPV/r EFV/FTC/TDF

p valuen = 12 n = 16

Age (years) 40.3 41.2 0.729
(32.4–46.7) (29.7–48.2)

Gender
Male 12 (100%) 16 (100%) –
Ethnicity
Hispanic (yes) 9 (75%) 9 (56.25%) 0.434
Race
African-American 1 (8.33%) 0 (0%) 0.829
Asian 0 (0%) 1 (6.25%)
Null 0 (0%) 1 (6.25%)
White 11 (91.67%) 14 (87.5%)
Route of trans-
mission
Heterosexual 4 (33.3%) 1 (6.25%) 0.014
Homosexual 5 (41.67%) 14 (87.5%)
Homosexual: 
Heterosexual

0 (0%) 1 (6.25%)

Homosexual:Het-
erosexual:IDU

1 (8.33%) 0 (0%)

Unknown 2 (16.67%) 0 (0%)
Prior AIDS
None 11 (91.67%) 16 (100%) 0.429
Weight (kg) 80.5 75.5 0.989

(71.5–99.5) (68.9–84.1)
Height (inches) 67.5 67 0.893

(67–69.3) (66.8–68.5)
Body mass index 
(kg/m2)

27.6 25.6 0.998
(24.4–33.29) (24.8–28.2)

CD4% 15 21 0.277
(13–23) (15–25)

CD4 count (cells/
mL)

304 448 0.974
(203–631) (400–554)

CD8% 60 59 0.472
(53–67) (55–61)

CD8 count (cells/
mL)

1135 00 0.453
(843–1243) (609–1330)

HIV Viral Load 
(log10 copies/mL)

4.71 4.52 0.510
(4.35–4.92) (4.01–4.85)
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compared to persons on EFV/TDF/FTC with 9.3 (95% CI: 
6.08,12.55) (p = 0.004) (Supplementary Table 1).

Exploratory analyses of CD8+ T cell subsets
There were also observed differences in other CD8+ T cell 
dynamics. From weeks 0 to 4, persons on RAL + LPV/r 
had significantly greater increases in CD38-HLA-DR+ 
effector memory CD8+ T cells (CD8+CD45RA+CD27-

CD38-HLADR+) 3.23 (95% CI: 2.04, 4.42) than EFV/
TDF/FTC 0.996 (95% CI: −0.3, 2.02) (p = 0.006) but this 
was not sustained to week 48 (Supplementary Table 1).

Soluble markers of immune activation
To evaluate if differences in rate of viral load suppres-
sion impacted other markers of inflammation, we also 
evaluated levels of IL-6, CD163, and sCD14 at baseline 
and at week 48. There were no significant differences 
between persons on RAL + LPV/r and EFV/TDF/FTC 
in baseline levels of these markers. No differences were 
noted in these markers between the two groups over time 
(Data not shown).

Discussion
Biexponential modeling of HIV viral kinetics revealed 
that starting persons on RAL  +  LPV/r resulted in a 
slower but prolonged first phase viral decay compared 
to EFV/TDF/FTC that ultimately resulted in lower HIV 
viral loads at time of transition from phase 1 to phase 2. 
Although we evaluated viral kinetics in a novel combina-
tion (INSTI + boosted PI), this finding is consistent with 
what has been observed with INSTI + NRTIs regimens 

total percentages of activated or proliferating lymphocytes 
between the two arms at weeks 4 or 48.

Analyses of CD8+ T cell dynamics did not reveal sig-
nificant differences between the two arms (Table 3).

Exploratory analyses of CD4+ T cell subsets
To evaluate the impact of an NRTI-sparing regimen on 
other CD4+ and CD8+ immunologic parameters, explor-
atory analyses of T cell subsets were performed. No sig-
nificant differences were observed between the two arms 
among the proportions of CD4+ T cell subsets at any time 
but significant differences did exist in the T cell subset 
dynamics. Persons taking RAL + LPV/r had significantly 
greater increases in the percentage of CD38-HLA-DR+ cen-
tral memory CD4+ T cells (CD4+CD45RA-CD27+CD38-

HLA-DR+) at week 4 mean change  =  2.86 (95% CI: 
1.40, 4.32) vs. 0.55 (95% CI: −0.71, 1.81); p  =  0.02) 
(Supplementary Table 1).

Evaluations of T cell dynamics from weeks 0 to 
48 revealed participants in the RAL  +  LPV/r arm had 
greater increases in the proportion of proliferating naïve 
(CD4+CD45RA+cKi67+) CD4+ T cells 7.63 (95% CI: 
4.39, 10.86) vs. −0.83 (95% CI: −3.2, 1.83) (p < 0.001). 
Treatment with RAL + LPV/r also demonstrated increases 
in natural T regulatory cells (CD4bright FoxP3+CD45RA+) 
with a mean slope 2.5 (95% CI: −2.54, 7.59) while partici-
pants on EFV/TDF/FTC decreased −8.03 (95% CI: −12.4, 
−3.7) (p = 0.003). Induced T regulatory cells (CD4bright 
FoxP3+CD45RA-) changed in proportion with natural T 
regulatory cells, with participants on RAL + LPV/r show-
ing a decrease in this subset of −0.51 (95% CI: −4.25, 3.2) 

Table 3  Estimated mean change from baseline in activated and proliferating T cell dynamics

Note: Mean Change (95% CI).

T cell subset

Weeks 0–4

P value

Weeks 0–48

EFV/TDF/FTC RAL+LPV/r EFV/TDF/FTC RAL+LPV/r P value

CD4+ T cells
CD38+ −1.18 −3.81 0.092 −5.65 −2.24 0.16

(−3.17, 0.080) (−6.12, −1.51) (−8.76, −2.54) (−5.83, 1.36
CD38+HLA-DR+ −2.02 −1.86 0.95 −7.72 −10.04 0.16

(−5.20, 1.17) (−5.54, 1.81) (−9.85, −5.60) (−12.50, −7.58)
CD45RA-CD27+CD38+ 3.44 2.52 0.70 −0.48 1.11 0.52

(0.35, 6.54) (−1.05, 6.09) (−3.66, 2.70) (−2.56, 4.78)
CD45RA-CD27-CD38+ −2.69 −0.63 0.07 −3.39 −5.31 0.25

(−4.15, −1.23) (−2.31, 1.06) (−5.57, −1.21) (−7.83, −2.79)
cKi67+ −4.61 −7.28 0.14 −18.45 −18.53 0.98

(−6.97, −2.26) (−10.0, −4.56) (−22.55, −14.3) (−23.3, −13.8)
CD8+ T cells
CD38+ −7.51 −6.96 0.87 −24.73 −24.76 0.99

(−12.0, −2.99) (−12.18, −1.7) (−27.9, −21.56) (−28.4, −21.08)
CD38+HLA-DR+ −3.57 −1.01 0.25 −11.16 −10.29 0.39

(−6.46, −0.67) (−4.36, 2.33) (−12.46, −9.86) (−11.8, −8.78)
CD45RA-CD27+CD38+ −3.24 −6.32 0.22 −4.89 −4.65 0.95

(−6.48, 0.01) (−10.1, −2.57) (−9.61, −0.16) (−10.11, 0.81)
CD45RA-CD27-CD38+ −1.02 −1.10 0.95 −3.17 −3.07 0.88

(−2.58, 0.53) (−2.89, 0.7) (−4.08, −2.26) (−4.12, −2.01)
cKi67+ −1.01 −4.08 0.14 −5.7 −6.14 0.2

(−3.71, 1.69) (−7.19, −0.97) (−6.14, −5.26) (−6.65, −5.63)
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achieved and maintained virologic suppression, possibly 
introducing selection biases. Thirdly, in our attempts to 
evaluate an NRTI-sparing regimen with previous docu-
mented virologic efficacy, the two study arms did contain 
ART drugs with very different mechanisms of action mak-
ing it difficult to definitively assert that our observations 
were due to sparing of NRTI, INSTI alone, or the combi-
nation of INSTI + PI.

No single NRTI-sparing regimen has demonstrated 
consistent efficacy in ART naïve persons infected with 
HIV. While there may be long-term benefits to specific 
NRTI-sparing regimens beyond lipodystrophy,20 in select 
populations,42 we did not observe any clinical relevant 
virologic or immunologic differences between naïve per-
sons taking RAL + LPV/r or EFV/TDF/FTC.

California collaborative treatment group 
(CCTG) 589 protocol team
Members
In addition to the authors, other members of the CCTG 
589 protocol team included the following: Vi Q. Bowman, 
Gunter Rieg (Kaiser Permanente); Stefan Schneider 
(Living Hope Clinical Foundation); Ashwaq Hermes 
(Abbott Laboratories); Shubha Kerkar (Desert Regional 
Medical Center), Carol Kemper (Santa Clara Valley 
Medical Center); Catherine Diamond (University of 
California Irvine); M. Witt, J. Tilles, R. Larsen (David 
Geffen School of Medicine at UCLA Harbor-UCLA 
Medical Center); and R. Thomas, F. Wang, and E. Seefried 
(University of California, San Diego).

Supplementary material
Supplemental data for this article can be accessed here 
http://dx.doi.org/10.1080/15284336.2017.1282578.

Acknowledgments
We thank all of the patients for their participation in the 
study.

Disclosure statement
In accordance with Taylor & Francis policy and our ethical 
obligation as researchers, Drs. Goicoechea, Jain, Kemper, 
and Ms. Sun have no conflicts of interest to report. Dr. 
Karris receives funding to the institution from GS-US-
311-1717 (Gilead Sciences) and has served as on an advi-
sory board for Gilead Sciences. Dr. Dube receives grant 
support from BMS, Merck, Gilead, Serono, and ViiV and 
has served as a consultant to Serono. Dr. Haubrich is cur-
rently employed by Gilead Sciences. These companies 
may be affected by the research reported in the enclosed 
paper. We have disclosed those interests fully to Taylor 
& Francis.

that demonstrate longer first phase decay compared to 
NNRTI  +  NRTIs-based regimens and PI  +  NRTIs or 
PI + NNRTI.28–31 In this study, we observed an even longer 
and slower phase 1 decay with INSTI + PI compared to 
historical data on INSTI + NRTIs but the median HIV 
VL at transition to phase 2 was similar.30 Yet, it remains 
unknown if this prolonged phase 1 decay and subsequent 
early viral suppression can decrease risk of onward HIV 
transmission in HIV-infected persons who continue to par-
ticipate in condomless sex shortly after ART initiation.32, 

33 It has been proposed that the rate of viral decay is a 
function of the “fastest acting drug;” thus, the longer first 
phase viral decay is likely related to the INSTI rather than 
combination of INSTI + PI.34 Of note, the recently availa-
ble tenofovir alafenamide fumarate (TAF) demonstrates a 
more rapid first phase viral decay than TDF35 and combi-
nations with INSTIs may prove to be particularly potent.

We also observed that the use of RAL + LPV/r com-
pared to EFV/TDF/FTC resulted in trends toward more 
rapid decrease of total activated CD4+ T cells at week 4, 
but not at week 48. This likely reflects early decreases in 
HIV VL and subsequent decreases in activated CD4+ T 
cells or more rapid clearance of productively infected acti-
vated CD4+ T cells due to the prolonged phase 1 HIV viral 
kinetics of the INSTI + PI-based regimen. In exploratory 
analyses, RAL + LPV/r compared to EFV/TDF/FTC also 
altered the dynamics of other T cell subsets demonstrating 
both early and late changes. However, no correction for 
multiple comparisons was applied to this portion of the 
analysis and it is unclear if our findings are of early or 
clinical significance.

Overall, the T cell dynamics observed in persons on 
RAL + LPV/r compared to EFV/TDF/FTC suggest this 
regimen may promote decreased cellular immune activa-
tion likely due to its impact on viral load decay. However, 
we cannot differentiate if these differences were due to 
INSTI,36 INSTI + PI combination, or NRTI sparing. Early 
decreases in activated CD4+ T cells during HIV treatment 
may be clinically relevant because it could: (1) minimize 
productive infection that is fueled by activated CD4+ T 
cells37–40 and (2) minimize the latent reservoir, by limiting 
the amount of infected activated CD4+ T cells that are 
returning to quiescence (particularly in persons starting 
ART in acute HIV).41 However, this study did not pur-
sue those evaluations and cannot definitively state that 
RAL + LPV/r offered any immunologic benefit over EFV/
TDF/FTC. Additionally, the differences in T cell dynam-
ics we observed were not reflected in soluble markers of 
inflammation. The main limitation of this study is the small 
number of participants that may have limited the statistical 
power for biologic markers of interest. Additionally, the 
parent study was a randomized controlled clinical trial, 
but this retrospective study only evaluated persons who 

http://dx.doi.org/10.1080/15284336.2017.1282578
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